10 research outputs found

    Identification of Drought-Responsive Universal Stress Proteins in Viridiplantae

    Get PDF
    Genes encoding proteins that contain the universal stress protein (USP) domain are known to provide bacteria, archaea, fungi, protozoa, and plants with the ability to respond to a plethora of environmental stresses. Specifically in plants, drought tolerance is a desirable phenotype. However, limited focused and organized functional genomic datasets exist on drought-responsive plant USP genes to facilitate their characterization. The overall objective of the investigation was to identify diverse plant universal stress proteins and Expressed Sequence Tags (ESTs) responsive to water-deficit stress. We hypothesize that cross-database mining of functional annotations in protein and gene transcript bioinformatics resources would help identify candidate drought-responsive universal stress proteins and transcripts from multiple plant species. Our bioinformatics approach retrieved, mined and integrated comprehensive functional annotation data on 511 protein and 1561 ESTs sequences from 161 viridiplantae taxa. A total of 32 drought-responsive ESTs from 7 plant genera Glycine, Hordeum, Manihot, Medicago, Oryza, Pinus and Triticum were identified. Two Arabidopsis USP genes At3g62550 and At3g53990 that encode ATP-binding motif were up-regulated in a drought microarray dataset. Further, a dataset of 80 simple sequence repeats (SSRs) linked to 20 singletons and 47 transcript assembles was constructed. Integrating the datasets on SSRs and drought-responsive ESTs identified three drought-responsive ESTs from bread wheat (BE604157), soybean (BM887317) and maritime pine (BX682209). The SSR sequence types were CAG, ATA and AT respectively. The datasets from cross-database mining provide organized resources for the characterization of USP genes as useful targets for engineering plant varieties tolerant to unfavorable environmental conditions

    Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    Get PDF
    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R. palustris genomes

    Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni

    Get PDF
    The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts

    Microarray Analysis of Mercury-Induced Changes in Gene Expression in Human Liver Carcinoma (HepG2) Cells: Importance in Immune Responses

    No full text
    Mercury is widely distributed in the biosphere, and its toxic effects have been associated with human death and several ailments that include cardiovascular diseases, anemia, kidney and liver damage, developmental abnormalities, neurobehavioral disorders, autoimmune diseases, and cancers in experimental animals. At the cellular level, mercury has been shown to interact with sulphydryl groups of proteins and enzymes, to damage DNA, and to modulate cell cycle progression and/or apoptosis. However, the underlying molecular mechanisms of mercury toxicity remain to be elucidated. Our laboratory has demonstrated that mercury exposure induces cytotoxicity and apoptosis, modulates cell cycle, and transcriptionally activates specific stress genes in human liver carcinoma cells. The liver is one of the few organs capable of regeneration from injury. Dormant genes in the liver are therefore capable of reactivation. In this research, we hypothesize that mercury-induced hepatotoxicity is associated with the modulation of specific gene expressions in liver cells that can lead to several disease states involving immune system dysfunctions. In testing this hypothesis, we used an Affymetrix oligonucleotide microarray with probe sets complementary to more than 20,000 genes to determine whether patterns of gene expressions differ between controls and mercury (1-3μg/mL) treated cells. There was a clear separation in gene expression profiles between controls and mercury-treated cells. Hierarchical cluster analysis identified 2,211 target genes that were affected. One hundred and thirty-eight of these genes were up-regulated, among which forty three were significantly over-expressed (p = 0.001) with greater than a two-fold change, and ninety five genes were moderately over-expressed with an increase of more than one fold (p = 0.004). Two thousand and twentythree genes were down-regulated with only forty five of them reaching a statistically significant decline at p = 0.05 according to the Welch’s ANOVA/Welch’s t-test. Further analyses of affected genes identified genes located on all human chromosomes except chromosome 22 with higher than normal effects on genes found on chromosomes 1-14, 17-20 (sex-determining region Y)-box18SRY, 21 (splicing factor, arginine/serine-rich 15 and ATP-binding), and X (including BCL6-co-repressor). These genes are categorized as control and regulatory genes for metabolic pathways involving the cell cycle (cyclin-dependent kinases), apoptosis, cytokine expression, Na+/K+ ATPase, stress responses, G-protein signal transduction, transcription factors, DNA repair as well as metal-regulatory transcription factor 1, MTF1 HGNC, chondroitin sulfate proteoglycan 5 (neuroglycan C), ATPbinding cassette, sub-family G (WHITE), cytochrome b-561 family protein, CDC-like kinase 1 (CLK1 HGNC) (protein tyrosine kinase STY), Na+/H+ exchanger regulatory factor (NHERF HGNC), potassium voltage-gated channel subfamily H member 2 (KCNH2), putative MAPK activating protein (PM20, PM21), ras homolog gene family, polymerase (DNA directed), δ regulatory subunit (50kDa), leptin receptor involved in hematopoietin/interferon-class (D200-domain) cytokine receptor activity and thymidine kinase 2, mitochondrial TK2 HGNC and related genes. Significant alterations in these specific genes provide new directions for deeper mechanistic investigations that would lead to a better understanding of the molecular basis of mercury-induced toxicity and human diseases that may result from disturbances in the immune system

    Molecular and Cellular Mechanisms Associated with Autoimmune Diseases

    No full text
    Evidence points to increases in the incidence and prevalence of several autoimmune diseases in the United States. As a result, the cost to public health from clinical management of autoimmune conditions is on the rise. The initiation and progression of autoimmune disturbances involves both genetic and environmental factors. Deficiencies in important proteins that normally participate in maintaining checks and balances within the internal milieu may render an individual prone to developing autoantibodies. Structural abnormalities or decline in normal levels of the pentraxins (serum amylase-P protein, the acute phase proteins, complement, and C-reactive proteins) have been shown to induce autoimmunity. Irregular transmission of information arising from multiple signal transduction pathways typically associated with the serine/threonine cascade routes of mitogen activating phosphorylation kinases, has also been found to induce autoimmunity. The kind of ligand/receptor interactions drives physical recruitment of different signals within the lymphocyte; these links define the quality and quantity of subsequent immune responses. CD95 or the Fas/Apo-1 and its ligand CD95L participate in regulating lymphocyte populations and therefore influence various aspects of immune responses. Mutational abnormalities resulting from synthesis of proteins by the CD95 and/or its ligand CD95L may result in alterations in the apoptotic pathways. Apoptosis may be completely inhibited, activated or partially stimulated. Modulation of apoptosis may lead to accumulation of self-antigens. Subsequently the immune system may be stimulated to react against self-molecules through lymphatic hyperplasia. This process may end up in proliferative disorders and enhanced susceptibility to autoimmune syndromes. This paper deals with mechanisms of autoimmunopathogenesis at the cellular and molecular levels. Emphasis is laid on the role of T and B cell receptor/ligand interactions, functions and malfunctions due to structural and quantitative alterations in T- B- cell cluster of antigen determinants. Genetically susceptible patients who develop spontaneous autoimmune diseases are examined and the etiological factors implicated in the initiation and subsequent dissemination of autoimmune diseases is discussed
    corecore